APPENDIX A : TYPICAL SHORING ARRANGEMENTS

Figure A1 Typical arrangement of half timber board shoring system 22
Figure A2 Typical arrangement of full timber board shoring system 23
Figure A3 Typical arrangement of sheet pile shoring system with timber
struts and walings 24
Figure A4 Typical sheet pile shoring detail with steel struts and walings 25
Figure A5 Typical shoring detail for cable trench 26
Figure A6 Typical arrangement of timber support in areas surrounding
extisting crossing services 27
Figure A7 Typical arrangement of sheet pile shoring system with timber
support in areas surrounding existing crossing services 28
Plate A1 Timber support with one layer of struts for shallow depth of
excavation 29
Plate A2 Timber support with two layers of struts 29
Plate A3 Timber support for deeper excavation 30
Plate A4 Steel sheet pile support 30
Plate A5 Steel sheet pile support 31
Plate A6 Timber support provided in areas surrounding existing crossing
services 31
Plate A7 Timber support provided in areas surrounding existing crossing
services 32
Plate A8 Timber support provided in areas surrounding existing crossing
services 32
Plate A9 Installation of support from outside the trench 33
Notes: 1. The sizes of the structural members (eg. timber boards, struts and walings) and the spacings between struts depend on the actual excavation depth, ground conditions and other factors affecting the loading on the shoring system.

2. Half timber board shoring may be adequate for moderately firm to firm soil provided that the groundwater level is below the bottom of the trench.

Figure A1 - Typical arrangement of half timber board shoring system
Note: The sizes of the structural members (e.g. timber boards, struts and walings) and the spacings between struts depend on the actual excavation depth, ground conditions and other factors affecting the loading on the shoring system.

Figure A2 - Typical arrangement of full timber board shoring system
Note: The sizes of the structural members (e.g., sheet piles, struts and walings) and the spacings between struts depend on the actual excavation depth, ground conditions and other factors affecting the loading on the shoring system.

Figure A.3 - Typical arrangement of sheet pile shoring system with timber struts and walings
Notes: 1. All dimensions are in millimeters.
2. The sizes of the structural members (e.g. sheet piles, strut and walings) and the spacings between struts depend on the actual excavation depth, ground conditions and other factors affecting the loading on the shoring system.

Figure A4 - Typical sheet pile shoring detail with steel struts and walings
Note: Typical excavation depths for cable trenches are between 1m and 2m.

Figure A5 - Typical shoring detail for cable trench
Note: The sizes of the structural members (e.g. timber boards, struts and walings) and the spacings between struts depend on the actual excavation depth, ground conditions and other factors affecting the loading on the shoring system.

Figure A6 - Typical arrangement of timber support in areas surrounding existing crossing services
Note: The sizes of the structural members (e.g., sheet piles, struts and walings) and the spacings between struts depend on the actual excavation depth, ground conditions and other factors affecting the loading on the shoring system.

Figure A7 - Typical arrangement of sheet pile shoring system with timber support in areas surrounding existing crossing services
Plate A1 – Timber support with one layer of struts for shallow depth of excavation

Plate A2 – Timber support with two layers of struts
Plate A3 – Timber support for deeper excavation

Plate A4 – Steel sheet pile support
Plate A5 – Steel sheet pile support

Plate A6 – Timber support provided in areas surrounding existing crossing services
Plate A7 – Timber support provided in areas surrounding existing crossing services

Plate A8 – Timber support provided in areas surrounding existing crossing services
Plate A9 – Installation of support from outside the trench